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Abstract

With the growing demand for high-fidelity 3D models from
2D images, existing methods still face significant challenges
in accurately reproducing fine-grained geometric details
due to limitations in domain gaps and inherent ambigu-
ities in RGB images. To address these issues, we pro-
pose Hi3DGen, a novel framework for generating high-
fidelity 3D geometry from images via normal bridging.
Hi3DGen consists of three key components: (1) an image-
to-normal estimator that decouples the low-high frequency
image pattern with noise injection and dual-stream training
to achieve generalizable, stable, and sharp estimation; (2)
a normal-to-geometry learning approach that uses normal-
regularized latent diffusion learning to enhance 3D geome-
try generation fidelity; and (3) a 3D data synthesis pipeline
that constructs a high-quality dataset to support training.
Extensive experiments demonstrate the effectiveness and su-
periority of our framework in generating rich geometric de-
tails, outperforming state-of-the-art methods in terms of fi-
delity. Our work provides a new direction for high-fidelity
3D geometry generation from images by leveraging normal
maps as an intermediate representation.

* Equal Contribution.
† Corresponding author: hanxiaoguang@cuhk.edu.cn.

1. Introduction

With the rapid advancement of computer vision and graph-
ics technologies, the task of generating 3D models from 2D
images has garnered significant attention in both academic
and industrial domains. Despite significant advancements
in recent years, existing methods remain inadequate in gen-
erating 3D models that sufficiently reflect the geometric de-
tails present in the input images, especially when dealing
with real-world input images, which typically exhibit com-
plex and rich geometric characteristics. Nevertheless, the
ability to faithfully reproduce these geometric details in 3D
generations is of paramount importance, as it directly influ-
ences the models’ realism, precision, and overall applica-
bility in practical scenarios.

Current state-of-the-art techniques for 3D generation
from 2D images often rely on deep learning models to learn
the direct mapping from the 2D RGB image to the 3D ge-
ometry. While these methods have shown promising re-
sults [37, 70, 84], their ability in producing fine-grained ge-
ometric details is inherently limited by several key factors.
First, the scarcity of high-quality 3D training data restricts
the model’s ability to learn detailed geometric features. Sec-
ond, there exists a significant domain gap between the train-
ing images (often rendered from synthetic 3D meshes) and
test images of various possible styles, leading to suboptimal

1



performance in practical applications. Third, the inherent
ambiguity in RGB images, caused by lighting, shading, or
complex object textures, further complicates the extraction
of fine-grained geometric information.

To address these limitations, we propose to leverage nor-
mal maps as an intermediate representation to bridge the
mapping from 2D RGB images to 3D geometry. Normal
maps, which encode surface orientation information, offer
several advantages for this task. First, by introducing strong
2D priors to process RGB images into normal maps, we can
effectively alleviate the domain gap between synthetic train-
ing data and real-world applications, which eases the 2D-
to-3D mapping learning. Second, normal maps, as a 2.5D
representation, provide clearer geometric cues compared to
RGB images, thereby having the potential of guiding the
geometry learning more effectively, especially in producing
fine-grained geometric details.

In this paper, we introduce Hi3DGen, a novel frame-
work for high-fidelity 3D geometry generation from im-
ages via normal bridging. The framework consists of
three key components: (i) an image-to-normal estimator
(NiRNE) that achieves generalizable, stable, and sharp nor-
mal estimation through a noise-injected regressive network
with dual-stream training to decouple the representation
learning of low- and high-frequency image patterns; (ii) a
normal-to-geometry learning approach (NoRLD) that em-
ploys normal-regularized latent diffusion learning to pro-
vide explicit 3D geometry supervision during training, sig-
nificantly enhancing generation fidelity; and (iii) a 3D data
synthesis pipeline that constructs the DetailVerse dataset,
containing high-quality synthesized 3D assets, serving as
important complementary of humman-created ones, to sup-
port the training of NiRNE and NoRLD. Our framework
generates rich, fine-grained geometric details, surpassing
state-of-the-art (SOTA) approaches in terms of generation
fidelity, as shown in teaser figure.

Contributions Our key contributions are as follows:

• We propose Hi3DGen, the first framework that leverages
normal maps as an intermediate representation to bridge
the gap between 2D images and 3D geometry, address-
ing the limitations of existing methods in generating fine-
grained details;

• We introduce NiRNE, which decouples the low-high fre-
quency learning with noise-injected dual-stream training
to achieve robust, stable, and sharp normal estimation
from input images;

• We develop a data synthesis pipeline and construct the
DetailVerse dataset, which contains high-quality synthe-
sized 3D assets to support the training of our framework.
We will also release this dataset and hope it can inspire
related research;

2. Related Work

Datasets for 3D Generation Early 3D datasets typi-
cally encompass small-scale objects from a limited category
range [8, 11, 73]. To address this limitation, researchers
endeavor to expand 3D data repositories through scanning
or multi-view photography [16, 31, 51, 62, 71]. This ap-
proach leads to the creation of large-scale datasets such
as MVImgNet [72, 81]. However, the quality of the con-
structed data often falls short of the requirements for di-
rect application in 3D generation tasks. Recently, larger-
scale datasets have been constructed by aggregating avail-
able human-created 3D assets from a wide range of online
sources [13, 14]. However, among the 10 million 3D assets
in Objaverse-XL [14], 5.5 million are from GitHub [22],
raising license concerns and high quality variety necessi-
tating costly data cleaning, and another 3.5 million from
Thingiverse [57] lack textures required by existing 3D gen-
eration pipelines. The remaining objects, mainly from
Objaverse-1.0 [13], exhibit a severe imbalance, character-
ized by a scarcity of high-quality assets with complex geo-
metric structures and rich surface details. This imbalance is
a common issue in datasets of human-created 3D meshes,
resulting in networks generating simplistic 3D models with
significant loss of detail. To address this gap, this paper ex-
plores synthesizing 3D data with high semantic variety, ge-
ometric structure diversity, and surface detail richness, and
utilizes them in the context of 3D generation as a non-trivial
complement to human-created 3D assets.

Normal Estimation Monocular methods can be primar-
ily divided into diffusion-based and regression-based ap-
proaches. Regression-based methods have advanced from
early handcrafted features [27, 28] to deep learning tech-
niques [18, 65, 85]. Recent progress includes leveraging
large-scale data [17], estimating per-pixel normal proba-
bility distributions [2], adopting vision transformers [50],
and conducting inductive bias modeling [1]. Though con-
ducting deterministic prediction that ensures higher stabil-
ity, regression-based methods struggle with generating fine-
grained sharp details. Diffusion-based normal estimation
has emerged with the adaptation of powerful text-to-image
models [47, 52, 83]. For instance, Geowizard [21] incor-
porates a geometry switcher to handle diverse data distribu-
tions. Considering high-variance results caused by the in-
herent stochastic nature of diffusion processes [19], strate-
gies such as affine-invariant ensembling [21, 32] and one-
step generation [77] have been explored but come with com-
putational intensity and oversmoothing issues. StableNor-
mal [80] improves estimation stability by reducing diffu-
sion inference variance via a coarse-to-fine strategy, but it
remains challenged by imperfect stability. Differently, by
deeply exploring the root causes of the sharpness produced
by diffusion-based methods, we novelly propose a noise-
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Figure 1. Overview of the proposed normal-bridged 3D geometry generation method. Our Hi3DGen comprises three components: an
image-to-normal estimator, a normal-to-geometry generator, and a synthesized dataset (DetailVerse) construction pipeline.

injected regressive method to enable both sharp and stable
estimations, with a dual-stream training strategy to fully uti-
lize training data from different domains.

Normal Maps in 3D Generation Normal maps, which
provide detailed geometric cues, have been widely used
to enhance the fidelity and consistency of 3D reconstruc-
tions [5, 6, 55, 64, 68, 75, 76, 82]. Recently, they have
also been explored in 3D generation. SDS-based meth-
ods [48, 63] render normal maps alongside RGB images
in optimization to regularize geometry [23, 29, 49]. Other
works use multi-view diffusion followed by reconstruction
or fusion, generating normal images to complement RGB
data and improve accuracy [3, 42, 44, 46, 58, 69, 79].
Though suffering from generating smooth surface details
due to multi-view inconsistency, they have shown the signif-
icant potential of normal maps in enhancing 3D generation.
In parallel, methods conducting 3D native diffusion based
on 3D representations such as feature volumes, Triplane [7],
3D Gaussians [33] have leveraged normal maps by decod-
ing them into meshes and applying normal rendering losses
to regularize surfaces [15, 40, 78, 87]. However, these ap-
proaches often face limitations due to high memory require-
ments for high-resolution 3D representations. Meanwhile,
methods focusing on latent code diffusion have achieved
state-of-the-art performance [37, 38, 70, 74, 84]. However,
the use of normal maps in this paradigm remains underex-
plored, where normal maps can not directly regularize the
diffusion learning in the highly abstract latent space. No-
table examples include CraftsMan [37], which uses normal
map refinement as a post-processing step, and Trellis [74],
which incorporates normal rendering loss during VAE train-
ing. Our approach uniquely emphasizes the critical role of
normal maps in bridging image-to-3D generation and in-

troduces a novel method to effectively integrate normal su-
pervision into the diffusion learning of 3D latent codes, ad-
dressing limitations of prior work.

3. Method
This section outlines the proposed Hi3DGen framework,
which aims to bridge the learning of 2D-to-3D lifting with
2.5D representation, normal map. Dividing the image-to-
geometry generation into two parts, image-to-normal esti-
mation and normal-to-geometry mapping, our framework
consists of a dual-stream normal estimator for prediction
stability and sharpness (Sec. 3.1) and an online normal
regularizer for fine-grained generation details and image-
geometry consistency in diffusion training (Sec. 3.2). We
further propose a synthesized 3D dataset, which contains
numerous generated 3D data of complex geometry struc-
ture and rich surface details, to facilitate sharp normal esti-
mation and detailed 3D geometry generation (Sec. 3.3). An
overview of the whole framework is visualized in Fig. 1.

3.1. Noise-Injected Regressive Normal Estimation
SOTA monocular normal estimation methods are mainly
divided into diffusion-based and regression-based ap-
proaches. The former produces sharper results yet suffers
from instability and spurious details due to their inherent
probabilistic nature, while the latter offers stable one-step
predictions but lacks sharpness. We first analyze the reason
for sharper estimations of diffusion-based methods from the
viewpoint of frequency domain. Then we propose integrat-
ing noise injection, the key mechanism in diffusion learn-
ing, into a regressive framework to enhance its sensitivity to
high-frequency patterns, as illustrated in Fig. 2. Based on
this, we further develop a dual-stream architecture to decou-
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Figure 2. Left part: Illustration of Noise-injected Regressive Nor-
mal Estimation; Right part: Noisy label at high-frequency regions
in real-domain data.

ple the low- and high-frequency representation learning for
both generalizability and sharpness, with a domain-specific
training strategy to stimulate the decoupled learning.
Noise Injection Considering normal sharpness usually ap-
pears at high-frequency image regions like edges and cavi-
ties, we begin by analyzing from the frequency domain the
underlying mechanisms that enable sharp normal estimation
results of diffusion-based methods. Defining the diffusion
process with a stochastic differential equation:

xt = x0 +

∫ t

0

g(s)dwt, (1)

where the initial state X0 evolves over time t ∈ [0, T ]
to become xt and wt is a Wiener process (Brownian mo-
tion) representing injected random noise. By conducting
Fourier transformation to this process, we can obtain the
signal-to-noise ratio (SNR) of any frequency component ω
at timestep t:

SNR(ω, t) =
|x̂0(ω)|2∫ t

0
|g(s)|2ds

, (2)

which is only subject to x̂0(ω) because the power of noise
is equal over all ω. Since natural images exhibit low-pass
characteristics, i.e., |x̂0(ω)|2 ∝ |ω|−α where α > 0 repre-
sents the attenuation coefficient, the high-frequency compo-
nents in xt has a faster SNR degradation than low-frequency
ones as the diffusion process progresses. This prompts that
the model gets a stronger supervision at high-frequency re-
gions in xt, which encourages the model to focus more on
capturing and predicting sharp details. Inspired by this, we
integrate the noise injection technique into regression-based

methods to encourage learning more high-frequency infor-
mation.
Dual-Stream Architecture Compared to high-frequency
features influencing the prediction sharpness, low-
frequency features, conveying more overall structure
information [9, 24], are important for the generalizability
in low-level vision tasks [39]. To decouple these two kinds
of features, we encode the input image through two inde-
pendent streams: one processes the original image without
noise injection to robustly capture low-frequency details
(clean stream), while the other processes the noise-injected
image to focus on high-frequency details (noisy stream).
The latent representations from both streams are concate-
nated in a ControlNet-style manner [83] and fed into the
decoder for final predictions, in a regression manner. This
design uses noise injection in one stream to encourage
high-frequency representation learning, and also maintains
another clean stream to perceive the original image for
regression, which effectively integrates the strengths of
diffusion-based methods into a regressive method. An
illustration of the method is presented in Fig. 2(c).
Domain-Specific Training To encourage the decoupled
representation learning in two streams, we design a domain-
specific training strategy to optimize the network by deli-
cately utilizing training data from different domains. Previ-
ous methods mix real- and synthetic-domain data in train-
ing to enhance the generalizability. However, real-domain
data, limited by the collection environment and the preci-
sion of scanners, suffer from noisy labels especially at ob-
ject edges (see a visualized example in Fig. 2 right part),
which hinder accurate learning at high-frequency details. In
contrast, synthetic domain data, constructed via rendering
from 3D ground truth, can provide precise high-frequency
labels, while it is limited by the domain gap with real im-
ages in application. Therefore, we first train the network us-
ing real-domain data to capture low-frequency information
for strong generalizability. In the second stage, we fine-
tune the noisy stream using synthetic-domain data while
freezing the parameters of the other stream. This allows
the noisy stream to focus on learning high-frequency de-
tails as a residual component of outputs by the clean stream.
The domain-specific training not only well utilizes the train-
ing data from real and synthetic domains according to their
strengths, but also properly encourages the optimization of
dual streams for decoupled representation learning.

3.2. Normal-Regularized Latent Diffusion
State-of-the-art 2D-to-3D generation methods rely on 3D
latent diffusion, which represents 3D geometries in a com-
pact latent space so that the 2D-to-3D mapping can be
learned more efficiently [37, 70, 74, 84]. However, these
methods suffer from easy loss of details or detail-level in-
consistency with the input images (see examples in Fig. ??).
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Figure 3. An illustration of Normal-Regularized Latent Diffusion.

Except for the ambiguity of RGB image input in indicating
fine-grained geometries, another important reason is the in-
direct supervision from the latent space only, where the ge-
ometry information, especially fine-grained details, is usu-
ally greatly compressed to ensure compactness for diffusion
learning.
Latent Diffusion We first formulate the typical latent dif-
fusion process in 3D generation methods. A Variational
Auto-Encoder (VAE) is trained to encode any 3D geome-
try X into a latent representation x0 and decode it back to
the original geometry X̂:

x0 = E(X), X̂ = D(x0), (3)

where E(·) and D(·) denote the encoder and decoder, re-
spectively. The reparameterization process is omitted for
simplicity. The image-conditioned diffusion process con-
structs xt by injecting noise into x0 at a given timestep t and
learns to recover x0 from xt. Flow matching is commonly
used to address it, which aims to learn a continuous trans-
formation by modeling the time-dependent velocity field,
with the loss function formulated as:

LLDM = Et,x0,xt

[∥∥vθ(xt, t)− u(xt, t)
∥∥2], (4)

where θ denotes the network parameters, u(xt, t) =
∇xt

log p(xt|x0) is the true velocity field, and the im-
age/text condition is implicitly included.
Normal Regularization Regularization in the 3D geom-
etry space allows for more precise supervision, especially
over surface details. Therefore, we propose an enhanced
loss function with explicit normal map regularization:

LNorld = LLDM + λ · RNormal(x̂0), (5)

where x̂0 represents the predicted clean sample and Rnormal
is the proposed regularization term:

RNormal(x̂0) = Ev

[∥∥Rv(D(x̂0))−Nv

∥∥2], (6)

where the predicted target latent x̂0 is decoded into explicit
3D geometry, Rv renders the normal map from viewpoint
v, and Nv denotes the corresponding ground truth normal

Figure 4. The procedure of DetailVerse Construction.

map. Note that this regularization is conducted online dur-
ing the diffusion training process, as shown in Fig. 3, rather
than in a post-processing stage. This actively guides the
training of diffusion networks and aligns the predicted la-
tent with a distribution that contains rich details consistent
with the input images.

3.3. DetailVerse Dataset
High-quality 3D data is essential in the training of our
NiRNE to provide clean normal labels and NoRLD for
high-fidelity 3D generation. Although Objaverse [13, 14]
provides a substantial number of image-normal and normal-
geometry training pairs, the majority of the 3D assets ex-
hibit simple structures and plain surface details, as shown
in Tab. 1. This limitation restricts the generation capabil-
ities of Hi3DGen. Given the prohibitive cost of manually
creating high-quality 3D assets, we propose a 3D data syn-
thesis pipeline to perform Text−→Image−→3D generation.
By using advanced generators integrated with meticulous
prompt engineering and data cleaning, this pipeline leads
to a dataset DetailVerse of 700k synthesized 3D assets with
considerably complex structures and rich details.
Dataset Construction We initiate the 3D data synthesis
process with text prompts rather than image prompts be-
cause text prompts allow for more straightforward control
of semantic diversity, thereby ensuring the variety of fi-
nal geometries. we first sourced approximately 14M high-
quality raw prompts from DiffusionDB [67]. A LLaMA-
3-8B model [60] is adopted for classification to filter out
complex scenes. Then, a rule-based filtering method to
eliminate stylistic modifiers, together with a LLaMA-3-
13B [60] for structural standardization to ensure consis-
tent formatting. In the second step, we employ the SOTA
Flux.1-Dev [35] for text-to-image generation. Additionally,
we specify the text prompt condition to control the view-
point and lightning in generation, and conduct pose vali-
dation using OrientAnything [66] to filter ones with spe-
cial viewpoints, which is important to guarantee stable 3D
generation. In the third step We employ Trellis [74], a
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Table 1. Comparison of 3D object dataset statistics. The numbers
X/Y in the third column means the Mean/Medium number.

Dataset Obj # Sharp Edge # Source
GSO [16] 1K 3,071 / 1,529 Scanning

Meta [56] 8K 10,603 / 6,415 Scanning

ABO [11] 8K 2,989 / 1,035 Artists

3DFuture [20] 16K 1,776 / 865 Artists

HSSD [34] 6K 5,752 / 2,111 Artists

ObjV-1.0 [13] 800K 1,520 / 452 Mixed

ObjV-XL [14] 10.2M 1,119 / 355 Mixed

DetailVerse 700K 45,773 / 14,521 Synthesis

SOTA 3D generator, to conduct image-to-3D synthesis. Fi-
nally, a rigorous data cleaning process that combines expert
evaluation with automated assessment preserves 700k high-
quality meshes.
Dataset Statistics We present the model number in the
dataset and the mean sharp edge number in each model in
Tab. 1 to show the scale and geometric detail richness of our
DetailVerse dataset. The sharp edge detection follows the
implementation in Dora-Bench [10]. The synthesized assets
in DetailVerse present rich surface details, as presented by
the examples in the blue block of Fig. 1.

4. Experiments

4.1. Experiment Setup

Dataset For image-to-normal training, we utilize two
complementary datasets. One is a diverse realistic dataset
following Depth-pro[4]. Another contains synthetic data
consisting of 20M RGB-to-normal pairs created by ren-
dering 40 images per asset from 500k DetailVerse assets.
For normal-to-geometry training, we curate a large-scale
dataset comprising 170K cleaned 3D assets from Obja-
verse [13] and 700K synthesized 3D assets from our De-
tailVerse. We render 40 images per asset following Trel-
lis [74]. For evaluation, the generalization ability of the
image-to-normal estimator in real scenes is validated on the
the reconstruction dataset LUCES-MV [41]. All images for
visual comparison and user studies are collected from Hy-
per3D website [12], Hunyuan3D-2.0 project page [59], and
Dora project page [54].
Implementation Details For image-to-normal, we adopt
GenPercept [77] architecture for Normal Regression net-
work. We initialize the encoder and decoder weights from
the Stable Diffusion V2.1 [53], finetuned using the AdamW
optimizer with a fixed learning rate of 3×10−5. For normal-
to-geometry, we build upon the Trellis [74], incorporating
classifier-free guidance (CFG) [26] with a drop rate of 0.1
and AdamW [43] optimizer with a fixed learning rate of
1 × 10−4. For the normal-to-geometry training stage, we
finetune the Large variant of Trellis using 8 NVIDIA A800

Figure 5. Normal estimation results comparison.

GPUs (80GB each) for 50k steps with a batch size of 256.
During inference, we set the CFG strength to 3.0 and use 50
sampling steps to achieve optimal results.

Evaluation Metrics For the evaluation of image-to-
normal estimation, we basically use normal angle error
(NE) to measure the overall prediction accuracy, measured
in degrees. We additionally use the metric Sharp Normal
Error (SNE) following Dora [10] to give emphasis on sharp
edges where geometric details are most salient. For eval-
uating normal-to-geometry conversion, we render normal
maps from 22 viewpoints around each object, which is used
for compute NE and SNE to measure the overall and de-
tailed geometry accuracy, respectively. More implementa-
tion details are included in the supplementary details.

Competitive methods We compare our NiRNE with
SOTA normal estimators across different methodologi-
cal categories. The comparison includes regression-based
methods (Lotus [25] and GenPercept [77]), diffusion-based
approaches (GeoWizard [21] and StableNormal [80]). Be-
sides, Hi3DGen is compared with existing SOTA 3D
generation methods including open-sourced CraftsMan-
1.5 [37], Hunyuan3D-2.0 [86], Trellis [74], and close-
sourced Clay[84], Tripo-2.5 [61], and Dora [10]. Note that
Dora has not released its testing API, so we compare with
Dora using the examples on its project page.

4.2. Image-to-Normal Estimation

Quantitative Results We provide the quantitative compar-
ison between our NiRNE on LUCES-MV and other meth-
ods in Tab. 2. It validates that NiRNE gets significantly su-
perior normal estimation performance to other regression-
or diffusion-based methods, in both overall normal accu-
racy and sharp-region normal accuracy.

Qualitative Results A qualitative results is presented in
Fig. 5, which shows that our NiRNE achieves superior es-
timation performance in (i) robustness with strong gener-
alizability on human and object inputs; (ii) stability with
less wrong details than diffusion-based methods (see error
maps); and (iii) sharpness especially when compared with
regression-based methods. These results further support our
related claims in Sec. 3.1.
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Figure 6. Ablations on the importance of normal bridging.

Figure 7. High-fidelity 3D results generated by our Hi3DGen.

Table 2. Performance comparison on image normal estimation.
We use (Diff.) and (Regr.) to indicate diffusion- and regression-
based methods, respectively. Bold indicates best results.

Method NE ↓ SNE ↓
(Diff.) GeoWizard [21] 31.381 36.642

(Diff.) StableNormal [80] 31.265 37.045

(Regr.) Lotus [25] 53.051 52.843

(Regr.) GenPercept [77] 28.050 35.289

(Regr.) NiRNE (Ours) 21.837 26.628

4.3. Normal-to-Geometry Generation

Qualitative Results We give a qualitative comparison
between the generated 3D geometries of the proposed
Hi3DGen and other methods, as shown in Fig. 9. It impres-
sively shows the superiority of our Hi3DGen in generating
high-fidelity results with rich details that are consistent with
the input images, which are easily lost by other methods.
Besides, our Hi3DGen also produce robust generations with
relatively smooth surface when less details presented in the
input images (e.g. the first and third example in Fig. 9). We
give more generation results of our Hi3DGen in Fig. 7, with
more in supplementary materials.
User Study We conducted a user study to evaluate the 3D
generation results of our Hi3DGen and 5 other methods in-
cluding Hunyuan3D-2.0, Dora, Clay, Tripo-2.5, and Trellis.
All 3D results for user study are randomly sampled from

the 300×6 generations for visual comparison. The evalua-
tion criteria focus on the fidelity of the generated 3D geom-
etry to the input images, which is measured by the consis-
tency in both overall shape and local details. For the parts
of the input images that are not visible, we ask the evalu-
ators to exercise their judgment and imagination to assess
the plausibility of the generated results and their stylistic
consistency with the visible portions. To ensure the com-
prehensiveness and professionalism of the user study, we
invite two groups of evaluators. The first group consist of
50 amateur 3D users, who assess 100×6 randomly sampled
results from the perspective of everyday applications, such
as 3D printing. The second group includes 10 professional
3D artists, who evaluate 20×6 results from the standpoint
of professional use, like 3D modeling and design. The re-
sults are presented in Fig. 8, which shows that our Hi3DGen
achieves the highest generation quality for both amateur
users and professional artists.

Figure 8. User study results.

4.4. Ablation Study

Normal Bridge We first validate the effectiveness of using
normal maps to bridge 3D generation. A direct image-to-
geometry generator based on Trellis [74] performs worse
than our normal-bridged Hi3DGen, and when using the
same normal regularization and training data as Hi3DGen,
it produces fake details (see the first two columns v.s. the
last column of Fig. 6). We also validate the influence of
using normal conditions of different accuracy and sharp-
ness to the final 3D generation quality. Smoother or wrong
normal estimations by other methods lead to a performance
drop, which also proves the importance of using accurate
and sharp estimated normals as the bridge.
DetailVerse Data We also validate the value of the pro-
posed DetailVerse dataset. By integrating image-normal
training pairs rendered from DetailVerse data, our NiRNE
can achieve 0.4 and 1.7 improvements in NE and SNE re-
spectively, as shown in the first two rows of Tab. 3. By us-
ing additional normal-geometry training pairs from Detail-
Verse, our NoRLD can achieve higher-fidelity generation
details, as shown in the 3rd and final columns in Fig. 10.
NiRNE Ablation We conduct ablative experiments to
validate the three components in our NiRNE: the noise
injection technique, the dual-stream architecture, and the
domain-specific training. Results in Tab. 3 validates the ef-
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Figure 9. Qualitative 3D generation comparison on samples from Dora’s project page [54].

Table 3. Ablation study on different components of NiRNE. “DV”,
“NI”,“DS”, and “DST” denote DetailVerse data, Noise Injection
technique, Dual-Stream architecture, and Domain-Specific Train-
ing strategy, respectively.

Method NE ↓ SNE ↓

Ours (full model) 21.837 26.628
Ours w/o DV 22.209 28.324

Ours w/o DST 23.288 29.690

Ours w/o DS 21.918 29.520

Ours w/o all 22.507 35.997

fectiveness of each component. More qualitative compar-
isons are included in the supplementary materials.

NoRLD Ablation We visualize the difference of not us-
ing the proposed online normal regularization in Fig. 10,
which shows that whether using DetailVerse data for train-
ing, adopting normal regularization can greatly improve the
generation fidelity (zoom in to see the roof details).

5. Conclusion

This paper propose Hi3DGen, a high-fidelity image-to-3D
generation framework. It works by using normal map, a

Figure 10. Ablation on the proposed NoRLD.

2.5D representation, to bridge the 3D generation for rich de-
tails consistent with input images in generations. Hi3DGen
consists of three components, a image normal estimator
producing robust, stable, and sharp predictions, a normal-
to-3D synthesis network with normal regularization for ge-
ometry consistency, and a 3D data synthesis pipeline pro-
viding detail-rich synthetic data for the training. Extensive
experiments validate their effectiveness and superiority.
Limitations Although Hi3DGen generates detail-rich 3D
results, part of them still have possible inconsistent or non-
aligned details with the input, which is caused by the gen-
erative nature of the 3D latent diffusion learning. It is our
future work to pursue reconstruction-level 3D generations.
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Hi3DGen: High-fidelity 3D Geometry Generation
from Images via Normal Bridging

Supplementary Material

6. More Details for the Method

More Implementation Details We reimplement GenPer-
cept [77] using StableDiffusion 2.1 by replacing the in-
put noise with VAE-encoded images. We implement noise
injection using an EDM-style noise sampler, which ran-
domly adds noise to the encoder output latents before they
are input to the decoder. Specifically, we follow EDM to
use standard parameters with σmin = 0.002 and σmax =
80.0. We guarantee the SNR of the features by select-
ing timestamps from 0 to 400, which we empirically found
maintains coarse shape knowledge — this approach aligns
with Instruct-Pix2Pix, which also adds noise in a middle
timerange to avoid structural changes. To better preserve
coarse knowledge while instructing the encoder to focus on
detailed information, we follow ControlNet [83] to add a
secondary encoder by copying the weights of the SD2.1 en-
coder and concatenating multi-layer features with the de-
coder for dual-stream training. Specifically, an image is
first processed by the VAE before entering the two encoders.
The encoders do not share weights since they are designed
to learn different frequency information from the images.

Training Details For training our I2N method, we in-
put identical image latents to the dual encoders, where the
coarse encoder remains noise-free with no modifications to
any layers, while for the fine-grained encoder, we follow
the approach described above to inject noise on the encoder
output. Notably, we feed the noised features to the decoder
layers rather than back to the encoder layers. For domain-
specific training, we first train on real-world data from the
Depth-pro dataset for 50,000 steps with a batch size of 256
at 768px resolution. We randomly crop images at vary-
ing aspect ratios before resizing to 768px. Subsequently,
we train our model on rendered images from DetailVerse
and Objaverse[13]. For DetailVerse, we render 40 spheri-
cal views per object using nvdiffrast, varying the radius and
field of view. For Objaverse training, we use the 40-view
renders from GObjaverse, applying the filter criteria from
RichDreamer[49] to select 170K high-quality samples. We
fine-tune in this second stage on the synthetic dataset while
freezing the coarse encoder. For training our N2G method,
we follow Trellis to employ rectified flow for model fine-
tuning. We reuse the Sparse Structure VAE and Structured
Latent VAE without modification, as DetailVerse is gener-
ated using Trellis (ensuring domain compatibility), and our
selected Objaverse subset is already included in the original
Trellis training dataset.

Figure S11. Ablations on image-to-normal estimation.

Figure S12. Qualitative comparison of image-to-normal estima-
tion with SOTA Photometric Stereo-based Method, SDM-UniPS.

Inference Details During inference of Hi3DGen, we first
utilize an off-the-shelf background removal model to iso-
late the foreground object. We crop the foreground and pad
the image to a square format, then resize it to 768×768 res-
olution before inputting it to our NiRNE model. During
the inference of NiRNE, we do not inject any noise into
the encoder features to ensure stable inference and maxi-
mize the preservation of detail information captured by the
fine-grained encoder. Given the estimated normal map, we
set the background to white and input the normal map to
NoRLD. Trellis employs a two-stage generation pipeline to
produce structured latents, which first generates the sparse
structure, followed by the local latents attached to it. Fol-
lowing the same approach as Trellis, we first generate the
sparse structure represented by sparse voxels, then initialize
noise on the sparse voxel representation to generate the final
structure latents using our fine-tuned structure latents flow
model. The final mesh is generated using the pre-trained
mesh decoder.
Metric Explanation For comprehensive evaluation of
image-to-normal, we adopt metrics from Dora [10] to quan-
tify normal map accuracy, with particular emphasis on sharp

1



Table S4. Image-to-Normal estimation evaluation on Luces-MV (SNE). Comparisons of NiNRE with SOTA photometric stereo techniques.
Bold indicates the second best results and Red indicates best results.

Method Bowl Buddha Bunny Cup Die Hippo House Owl Queen Squirrel Ave.

SDM-UniPS (K=2) 37.65 26.24 29.02 23.70 26.32 31.45 40.68 24.56 27.14 26.10 29.286
SDM-UniPS (K=4) 31.64 20.59 23.23 23.39 25.58 21.91 38.61 22.26 25.97 24.04 25.722
Ours 34.55 21.13 30.45 17.47 27.20 24.64 34.58 25.15 26.82 24.29 26.628

edges where geometric details are most salient. Specifi-
cally, we compute the Sharp Normal Error (SNE) through
a three-step process: Firstly, we detect salient regions in
the ground truth normal maps through canny. Secondly,
we dilate these masked regions to ensure complete cover-
age of edge features. Finally, we calculate the normal angle
error within these masked regions. For completeness and
fair comparison with existing methods, we also report the
Normal Error (NE) across the entire normal map, measured
in degrees. For evaluating normal-to-geometry conversion,
we render normal maps from 22 fixed, evenly spaced view-
points around each object using nvdiffrast [36], which is
used to compute SNE and NE.

7. More Details for the DetailVerse
To ensure the quality of our synthesized meshes, we im-
plement a rigorous multi-stage data generation and filtering
pipeline that combines expert evaluation with automated as-
sessment techniques.
Step 1: Semantic Text Prompt Curation We initiate the
3D data synthesis process with text prompts rather than
image prompts, as textual descriptions enable more pre-
cise control over semantic diversity, thereby ensuring va-
riety in the resulting geometries. To collect high-quality
text prompts with semantic diversity, we first sourced ap-
proximately 14M raw prompts from DiffusionDB [67], cov-
ering a wide range of topics relevant to AI generation
applications. We employed a LLaMA-3-8B model [60],
fine-tuned with manually annotated examples, to categorize
these prompts into four distinct classes: (i) Single Objects;
(ii) Multiple Objects; (iii) Scenes; and (iv) Others. Only
prompts from classes (i) and (ii) were retained, yielding ap-
proximately 1M high-fidelity prompt candidates.

Next, we applied rule-based filtering to preserve geomet-
ric and semantic attributes while eliminating stylistic modi-
fiers. Empirically, we observed that input images with near-
isometric viewpoints and CGI-rendered aesthetics signifi-
cantly enhance the fidelity of 3D synthesis. Thus, we im-
plemented structural prompt standardization to prompting
the image generation. Specifically, we applying domain-
specific prompt templates to enforce explicit geometric cues
and structural clarity (e.g., “isometric perspective”, “Unreal
Engine 5 Rendering”, “4K”, “MasterPiece”). This com-
prehensive process yielded approximately 1.5 million well-
curated and natural prompts.

Step 2: High-Quality Image Generation With our di-
verse text prompt collection established, the next step in-
volved generating corresponding images suitable for 3D as-
set synthesis. The key requirements for these images were:
(i) high visual fidelity with rich details that accurately re-
flect the textual descriptions; and (ii) specific viewpoints
and styles that facilitate robust 3D reconstruction.

We integrated the state-of-the-art Flux.1-Dev [35] as our
image generator. To ensure detailed output, we filtered the
generated images by ranking their sharpness according to
the number of sharp pixels, as calculated using Canny edge
detection, and retained only the top 50%. For each prompt,
we randomly selected a seed to encourage variety, generat-
ing exactly one image per prompt.

To mitigate geometry distortion in the resulting 3D mod-
els, we utilized OrientAnything [66], a robust object orien-
tation estimation model, to measure the alignment between
the camera view and canonical object orientation. Images
with angular deviations exceeding 60◦ were rejected to pre-
vent structural distortions and preserve geometric fidelity.
Through this filtering process, we preserved 1 million high-
quality images for the subsequent 3D synthesis stage.

Step 3: Robust Image-to-3D Synthesis We employed
Trellis [74], a state-of-the-art two-stage 3D generator, to
produce high-fidelity 3D objects from the prepared images.
Given its superior performance with high-quality inputs, we
initially generated a set of preliminary meshes.

To ensure mesh quality, we implemented a rigorous data
cleaning process combining expert evaluation with auto-
mated assessment. We randomly sampled 10K meshes and
engaged 10 trained experts to conduct triple-blind quality
assessments. The evaluation criteria primarily focused on
surface quality, specifically examining whether the rendered
normal maps contained holes or noise artifacts.

Based on these expert annotations, we trained a quality
assessment network using DINOv2 [45] features. Specifi-
cally, we extracted features from four equiangular rendered
normal maps of each mesh and trained a three-layer MLP
classifier for quality scoring. This trained network was then
applied to evaluate the entire dataset. Models that received
positive classifications across all four views were selected
for training our NoRLD model. Through this compre-
hensive quality assurance process, we retained 700K high-
quality object meshes to form our DetailVerse dataset. A
data gallery is shown in Fig. S13, and better visualizations
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are presented in the demo video.

8. More Ablation Studies

NiRNE Ablation We provide qualitative results to sup-
plement the ablation studies on the proposed NiRNE. As
shown in Fig. S11, each component makes positive role in
the final performance.

9. More Results

More Image-to-Normal Results We compare NiRNE
with SOTA photometric stereo technique (SDM-
UniPS [30]), which works in a different setup that requires
input images under K different lightning conditions. (As
shown in Fig. S12).
More Comparisons We give more qualitative com-
parisons in Fig. S14, which shows our normal-bridged
Hi3DGen can achieve more consistent 3D detailed geome-
tries with input images than existing methods. Better visu-
alizations are presented in the demo video.
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Figure S13. More DetailVerse data exhibition.4



Figure S14. More 3D generation results comparison.

5


	Introduction
	Related Work
	Method
	Noise-Injected Regressive Normal Estimation
	Normal-Regularized Latent Diffusion
	DetailVerse Dataset

	Experiments
	Experiment Setup
	Image-to-Normal Estimation
	Normal-to-Geometry Generation
	Ablation Study

	Conclusion
	More Details for the Method
	More Details for the DetailVerse
	More Ablation Studies
	More Results

